II Semester M.Sc. Degree Examination, July 2017 (CBCS) MATHEMATICS M 203 T : Topology - II

Time: 3 Hours Max. Marks: 70

Instructions: I) Answer any five full questions.

ii) All questions carry equal marks.

- a) Prove that a continuous image of a compact space is compact and also show that an infinite set X with the co-finite topology is compact.
 - b) Every countable open cover of (X,7) has a finite subcover. Then prove that (X,7) is countably compact.
 - c) Prove that every closed subset of a locally compact space is locally compact. (7+4+3)
- 2. a) Prove that second countability is both topological and hereditary property.
 - b) Define a separable space. Prove that a metric space which is Lindeloff is a second countable.
 - c) Prove that a metric space (X, d) is countably compact iff every countable open cover has a finite subcover. (5+5+4)
- a) Show that a mapping †: Z → X×Y is continuous iff ∏_X of and ∏_Y of are continuous.
 - b) Show that X x Y is first countable iff X and Y are first countable.
 - c) Prove that if A is closed in (X, 7) and B is closed in (Y, 7) then A x B is closed in the product topology and conversely. (4+4+6)
- a) Prove that in a T₀-space the closure of distinct points are distinct and conversely.
 - b) Define a T1-space. Prove that T1 property is topological.
 - c) Show that a compact subset of a Hausdorff space is closed. (5+4+5)

- 5. a) Show that X is regular if and only if for every open set G containing x, there exists an open set G' such that x ∈ G' ⊆ G' ⊆ G.
 - b). Prove that a regular space need not be a T,-space.
 - c) Define T₃-space Prove that every metric space is a T₃-space. (5+4+5)
- 6. a) Define a normal space. Is normality a hereditary property? Justify your answer.
 - b) Give an example for a To-space need not be a normal.
 - c) Show that a regular Lindeloff space is normal.

(4+3+7)

- 7 a) State and prove Tietze's extension theorem.
 - b) Show that normal space is regular if and only if it is completely regular. (10+4)
- 8. a) Prove that a complete normality is a hereditary and topological property.
 - b) Show that the set of reals with the discrete topology is completely normal but not when the topology is the co-finite topology.
 - (c) Prove that every paracompact Hausdorff space is normal.

(6+4+4)